

Phenology cameras observing boreal ecosystems of Finland

<u>Mikko Peltoniemi¹, Kristin Böttcher², Mika Aurela³, Maiju Linkosalmi³, Pasi Kolari⁴, Cemal Melis Tanis³, Sari</u> Metsämäki², John Loehr⁴, Ali Nadir Arslan³

¹ Natural Resources Institute Finland (Luke), Vantaa, Finland, <u>*mikko.peltoniemi@luke.fi</u>, ² Finnish Environment Institute, Helsinki, Finland, 3Finnish Meteorological Institute, Helsinki, Finland, ⁴University of Helsinki, Finland

Fig: Season changes in Paljakka spruce site in Central Finland

Questions and examples

snow cover?

Fig: Estimates of end of snow cover based on EO-observations. Estimates are accurate when sky is clear and EO image time series is continuous (left). Melt-off days can be severely biased (right) when there are cloud gaps in the EO image time series (Metsämäki et al., in prep.).

Figs: Left: Original image. Right: identified snow covered (gray) and snowless (white) areas. Blackened area was excluded from the analysis. Tanis et al. in prep..

Monimet)

Can camera derived information be used in improving EO-products of phenology and

Vith the contribution of the LIFE+ financial instrument of the European Union, LIFE12 ENV/FI/000409

luke.fi