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Today’s menu 

• Definitions 

 

• Uncertainties in satellite observations 

 

• Uncertainties in modeling 

 

• Example on how we have tried to take 

uncertainties into account when using simulations 

and observations  
 

 

  

 

 



Definitions 

• Error and uncertainty are two different things: 

 

• Error – the concept of ‘wrongness’ 

-  How different is the measured value from the (unknown) 

true value of the measurand? 

 

• Uncertainty – the concept of ‘doubtfulness’ 

- Given the measured value, what range of values is it 

reasonable to attribute to the measurand? 

- Quantification: “Standard uncertainty” is the standard 

deviation of the (estimated) error distribution.  

  

Error is often unknown (and if we did know what it was we would 

correct for it). We therefore consider uncertainty, a measure of the 

dispersion of the error distribution.  

 

(Based on GlobTemp presentations by C. Merchant and D. Ghent) 



Definitions 

 

• Random effect 

- a source of errors that are uncorrelated between 

repeated measured values 
- note: errors can be random (uncorrelated); uncertainty 

cannot be random (or systematic) 

 

• Systematic effect 

- a source of correlated errors that you could correct for if 

you understood it 

- note: this is not the same as bias 

- in Earth observation systematic errors correlate on 

particular scales of time and space very commonly  

 can be “locally” systematic   

  

 

(Based on GlobTemp presentations by C. Merchant and D. Ghent) 
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Uncertainties in satellite observations 



(Based on GlobTemp presentations by C. Merchant and D. Ghent) 

Uncertainties in satellite observations 

Propagation of uncertainties from L2 to L3 gridded products: 

• Uncertainties from random effects reduce as 1/√n 

• Uncertainties from locally correlated effects are reduced only at 

larger scales 

• Sampling uncertainty is an additional uncorrelated effect 

introduced when the grid box is not fully sampled in space or time 
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   estimation of L3 uncertainties is very complicated thus rarely done  

 but people are working on it. 

 



Uncertainties in model simulations 
Stochastic models do what you make them do  no uncertainty 

 

 

   

 



Uncertainties in model simulations 
Stochastic models do what you make them do  no uncertainty 

•  uncertainty estimates derived typically from 

•  multi-model ensembles  

•  perturbed simulations from a single model 

• ensemble averages and ensemble standard deviation as a 

measure of uncertainty 

 

 

   

 



Uncertainties in model simulations 
Stochastic models do what you make them do  no uncertainty 

•  uncertainty estimates derived typically from 

•  multi-model ensembles  

•  perturbed simulations from a single model 

• ensemble averages and ensemble standard deviation as a 

measure of uncertainty 

 

• Some pitfalls 

• each model/simulation are thought to produce independent data, 

and their errors are expected to cancel each other out 

• while models are different, they are not independent in any 

strict statistical sense; they all are limited by similar 

computational constraints and have developed in the same 

modeling tradition. 

• which parameters to perturbate? Just the atmospheric state or 

all the parameterizations related to the studied process? What 

are the ranges for the perturbations? 

 



Comparing simulations with observations 
Simulations and observations have different spatial and temporal 

scales/sampling 
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Simulations and observations have different spatial and temporal 
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(From Schutgens et al. 2016a and 2016b) 



Comparing simulations with observations 
Simulations and observations have different spatial and temporal 

scales/sampling 

  

 

 

 

 

 

 

 

 

 

 

   

 

(From Schutgens et al. 2016a and 2016b) 

Perfect model (210 x 210 km)  

Perfect observation (10 x 10 km)  



Comparing simulations with observations 
Simulations and observations have different spatial and temporal 

scales/sampling 

  

 

 

 

 

 

 

 

 

 

 

• Model data and observations should be spatio-temporally averaged 

to ensure best agreement  

• Model data need to be spatially interpolated to and temporally 

collocated with the observations  

   

(From Schutgens et al. 2016a and 2016b) 

Perfect model (210 x 210 km)  

Perfect observation (10 x 10 km)  



Example: the ITICA project 
 

• investigate if biogenic emissions could explain the positive correlation 

between atmospheric aerosol load (AOD) and temperature (LST) and 

quantify their radiative effects 

 

•  over the Southeastern US (Goldstein et al. 2009) 

•  over boreal regions (Paasonen et al. 2013)  

 

• estimate the significance of the negative feedback caused by a 

warming-induced increase in the aerosol direct radiative effect   
 



Satellite products used in the project  
(2005-2011, Level 3) 
 

• AATSR Land surface temperature (LST) 

• pixel level uncertainty for the L3 data (0.05° x 0.05°) 

• AATSR Aerosol Optical Depth (AOD) 

• variability within L3 pixels (standard deviation)  

• OMI Nitrogen Dioxide (NO2) 

• 20 % uncertainty based on literature 
 

 

Products mainly collocated to a daily, 1° x 1° grid 



Model simulations done in the project 
 

• Simulations with ECHAM6.1-HAM2.2-SALSA 

• CONTROL (2002-2010) 

• noBIOSOA: without biogenic SOA formation 

 

• Uncertainty/variability estimation based on the variability between daily 

values within the summer months 

• used a statistical method called bootstrapping 

• information on how well the averaged value represents the underlying  

distribution   



Linear fitting 
 

• As a “sanity check” we tested statistically if a linear relationship between 

the parameters was more likely than a random relationship  

 

• Linear fitting was done using Bayesian inference 

• uncertainties in both dependent and independent variables were 

taken  into account  

• the method produced credibility intervals for the estimated 

parameters 



Goldstein et al. (2009) 

Years 2000-2005 

Results: 

Southeastern US 



Goldstein et al. (2009) 

Years 2000-2005 

AATSR data (JJA) 

Years 2005-2011 

Results: 

Southeastern US 



Results: 

Comparison of summers in the southeastern US 
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Results: 

Calculation of “non-anthro” AOD 

- anthropogenic contribution was 

estimated with a linear fit 

between the summertime AOD 

and tropospheric NO2 columns 

(AOD=1.31e-16NO2,trop+0.013) 

- with this relationship the 

anthropogenic AOD was 

estimated from the observed 

tropospheric NO2 values 

- the “non-anthro” AOD was 

estimated by subtracting the 

anthropogenic AOD from the total 

AOD 
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AODNA,ano=0.006(±0.004)*LSTano - 0.001 



Results: 

Model comparison 

AODbio=0.004(±0.001)*LSTano + 0.056 AODNA,ano=0.006(±0.004)*LSTano - 0.001 



Results: 

Boreal regions 



AODNA,ano=0.007(±0.001)*LSTano - 0.001 

Results: 

Western and Eastern Russia 
Mixed forests 

Western Russia 
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AODbio=0.006(±0.001)*LSTano + 0.032 AODNA,ano=0.007(±0.001)*LSTano - 0.001 

AODano=0.0025(±0.0010)*LSTano - 0.003 

Results: 

Western and Eastern Russia 
Mixed forests 

Western Russia 

Mixed forests 

Eastern Russia 



AODbio=0.006(±0.001)*LSTano + 0.032 AODNA,ano=0.007(±0.001)*LSTano - 0.001 

AODbio=0.0012(±0.0002)*LSTano + 0.035 AODano=0.0025(±0.0010)*LSTano - 0.003 

Results: 

Western and Eastern Russia 
Mixed forests 

Western Russia 

Mixed forests 

Eastern Russia 



Conclusions  
 

 

• In order to get meaningful results and conclusions, uncertainties of the 

used data sets should be considered 

 

 

 

 

   



Conclusions  
 

 

• In order to get meaningful results and conclusions, uncertainties of the 

used data sets should be considered 

 

• Models are not able to reproduce observations perfectly 

  use them to test hypotheses 

  instead of absolute values you can use anomalies and variability 
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Thank you! 


