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Abstract

Application of remote sensing datasets in modelling phenology of heterotrophic

animals has received little attention. In this work, we compare the predictive

power of remote sensing versus temperature-derived variables in modelling

peak flight periods of herbivorous insects, as exemplified by nocturnal moths.

Moth phenology observations consisted of weekly observations of five focal

moth species (Orthosia gothica, Ectropis crepuscularia, Cabera exanthemata, Dys-

stroma citrata and Operophtera brumata) gathered in a national moth monitor-

ing scheme in Finland. These species were common and widespread and had

peak flight periods in different seasons. Temperature-derived data were repre-

sented by weekly accumulating growing degree days (GDD) calculated from

gridded temperature observations. Remote sensing data were obtained from

three sources: (1) snow melt-off date from the MODIS daily snow maps, (2)

greening date using the NDWI from MODIS data and (3) dates of start, maxi-

mum and end of growing season based on the JRC FAPAR products. Peak phe-

nology observations of moths were related to different explanatory variables by

using linear mixed effect models (LMM), with 70% of the data randomly

selected for model calibration. Predictive power of models was tested using the

remaining 30% of the data. Remote sensing data (snow melt-off and vegetation

greening date) showed the highest predictive power in two moth species flying

in the early and late spring, whereas in the three other species none of the vari-

ables showed reasonable predictive power. Flight period of the spring species

coincides with natural events such as snow melt or vegetation greening that can

easily be observed using remote sensing techniques. We demonstrate the appli-

cability of our methodology by predictive spatial maps of peak flight phenology

covering the entire Finland for two of the focal species. The methods are appli-

cable in situations that require spatial predictions of animal activity, such as the

management of populations of insect pest species.

Introduction

Remote sensing data have been used to observe vegetation

phenology (White et al. 2009; Ganguly et al. 2010; Gon-

samo and Chen 2016; Vrieling et al. 2017) or the amount

of annual net primary productivity across continents

(Myneni et al. 1997; Running et al. 2004; Liu et al. 2013),

and their change over time (Ivits et al. 2012; Zhang et al.,

2014; Zhao et al. 2015). While modelling of the phenol-

ogy of plants and vegetation has utilized both tempera-

ture-derived and remote sensing data, modelling the

phenology of animals has typically relied on using tem-

perature-derived measures such as growing degree days as

predictor variables (e.g. Roy et al. 2001; Nietschke et al.
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2007; Hodgson et al. 2011), but very few studies have

used remote sensing data. By contrast, most studies com-

bining animals and remote sensing data have focused on

predicting species occurrence in space (Leyequien et al.

2007; Pettorelli et al. 2011, 2014), with only some excep-

tions focusing on temporal occurrence of insect abun-

dance (Jepsen et al. 2009a; Trierweiler et al. 2013; Sweet

et al. 2015; Olsson et al. 2016).

Several different satellite-based remote sensing indices

have been developed and used in studies of vegetation

phenology in recent years. These include the Normalized

Difference Vegetation Index (NDVI) (Badeck et al. 2004;

Karlsen et al. 2006; White and Nemani 2006; Pettorelli

et al. 2011), the Normalized Difference Water Index

(NDWI) (Delbart et al. 2005, 2008) and the Fraction of

Absorbed Photosynthetically Active Radiation (FAPAR)

(Verstraete et al. 2008). Thus, it is now possible to

explore if such variables could be used in addition to

temperature-derived variables to model phenology of ani-

mals. Developing such methodologies is also timely as

they will support the global targets of conserving biodi-

versity set by the Convention of Biological Diversity at

the Aichi conference (CBD, 2014; O’Connor et al. 2015).

One of these targets is development of novel methods for

monitoring phenology of terrestrial ecosystems. Therefore,

novel initiatives of using earth observation techniques in

monitoring changes in ecosystems, including phenology

of animal species, at both regional and global scales are

urgently needed (e.g. Lausch et al. 2016; Vihervaara et al.

2017).

In this study we test if the phenology of hetero-

trophic animals, as exemplified by nocturnal moths, can

be modelled using remote sensing variables and temper-

ature-derived variables (growing degree days), and com-

pare the predictive power of models fitted using

different sets of variables. Firstly, we are particularly

interested in understanding under what circumstances

do models based on remote sensing data show reason-

able power in predicting insect phenology and how

they compare to models using variables derived from

temperature observations. Secondly, and building on the

first aim, we derive predictive spatial models that can

be used as phenological indicators to describe the sea-

sonal progress of flight periods of herbivorous insects.

As the focal group we selected nocturnal moths, for

which we use an extensive monitoring dataset collected

between 1993 and 2012 across one country, Finland.

Moths comprise a particularly suitable species group for

a comparison of predictive power between remote sens-

ing and temperature-derived measures, as they are

widespread and abundant enough to allow collecting

phenological observations across large geographic areas

by using standard methods.

Materials and Methods

Study area

The study area covers the total land area of Finland

(338 400 km2), which largely belongs to the boreal forest

zone, with some deciduous-dominated forests in the south-

ern parts of the country. Forests dominate the landscape

throughout the country all the way to the very northern

parts, which are characterized by subarctic tundra and open

bogs. Agricultural areas are concentrated in the south-wes-

tern parts. Finland’s climate is intermediate, combining

characteristics of both a maritime and a continental cli-

mate. According to K€oppen’s climate classification most of

Finland belongs to the subarctic (or boreal) climate zone

(Dfc), whereas the southernmost parts of the country are

situated in the warm-summer humid continental zone

(Dfb). Snow cover typically covers the whole country,

arriving in October–December, melting in April–June,
depending on the year. In mild winters the southern parts

of the country may lack a continuous seasonal snow cover.

Moth phenology data

The observations of moth phenology gathered through the

Finnish national moth monitoring scheme (Nocturna) con-

stitute the basic phenology data in this work (Leinonen

et al. 2016). Moths are observed using light traps that are

equipped with Hg bulbs and run every night from the early

spring to the late autumn, typically between April and Octo-

ber. The traps are usually emptied weekly and the moth

specimens identified by voluntary observers. During the

period 1993–2012, altogether 208 trap sites were included in

the monitoring network (Leinonen et al. 2016). Of these

sites, 51 traps with the least temporal gaps and altogether

consisting of 810 trapping years with continuous moth

observations were selected for data extraction (Fig. S1).

The focal moth species were selected for phenology mod-

elling based on the following criteria: wide distributional

area, high abundance and timing of the peak flight period

spread in different parts of the season. The selected five

focal species are: Orthosia gothica (family Noctuidae, peak

flight in late April–early May), Ectropis crepuscularia

(Geometridae, late May–early June), Cabera exanthemata

(Geometridae, late June–early July), Dysstroma citrata

(Geometridae, mid-August) and Operophtera brumata

(Geometridae, late September–early October). Stages of life
cycle of the five focal species in relation to the phenological

events detected using remote sensing methods and used in

this work are presented in Figure 1. Of the five focal spe-

cies, O. brumata has been subject to considerable research

as the species is a forest pest in parts of its range, whereas

the four other species have been subject to very few or no
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ecological studies at all. In O. brumata, timing of egg hatch-

ing and larval development have been topics of studies due

to their high importance to population growth rate and

development of defoliations (Jepsen et al. 2009b; van Asch

et al. 2013). The nomenclature of moths follows Aarvik

et al. (2017).

Peak flights were selected to represent timing of the

flight periods because they are less affected by inter-

annual abundance variation than other descriptors of the

flight period such as start, end and length (e.g. Roy and

Sparks 2000). This is because the length of a species’

flight period may appear longer in years of high abun-

dance compared to years of low abundance. Peak flights

were calculated based on the median occurrence of indi-

viduals per year and trap site. Mid-day of the median

observation period was used as the peak flight date.

Although moth traps are typically emptied weekly, there

is some variation in the lengths of observational periods

for logistic reasons. Therefore, inaccuracy (expressed as

the average length of observational period divided by

two) in the mid-day values of the peak flight periods var-

ies slightly across the focal species (due to slight varia-

tions in the length of the observational period): Orthosia

gothica (�3.83 days), Ectropis crepuscularia (�3.67 days),

Cabera exanthemata (�3.81 days), Dysstroma citrata

(�3.85 days) and Operophtera brumata (�4.26 days).

Explanatory variables

Geographical variables

Location of each trap site is represented by the latitudinal

coordinate of the Finnish national uniform grid system in

metres (YKJ) to account for a potential latitudinal trend

in timing of the peak flight. Two of the five focal species

(Orthosia gothica and Operophtera brumata) showed a

marked latitudinal gradient in timing of their peak flight

period (Fig. S2a, S2e).

Climatic variables

Time series of daily mean temperatures for the grid cells

containing the moths trap locations were extracted from

daily gridded temperature dataset in 10 km 9 10 km reso-

lution (Ven€al€ainen et al. 2005; updated). If the location of

a moth trap was exactly on the edge between two 10-km

grid cells, the cell to the east and north of that point was

used. Accumulated temperature sums (growing degree

days, GDD) above a base temperature were calculated for

the locations of moth traps for each year of the period 1993

to 2012. A total of 18 different summation periods were

calculated, all starting on 1 January of each year and ending

between 1 April (or 31 March in leap years) and 29 July

(28 July in leap years) in weekly intervals. GDDs were cal-

culated using 16 different base temperatures between �5°C
and 10°C with intervals of one degree. This range of base

temperatures was selected because previous empirical and

modelling studies on insect phenology have shown that the

base temperature of accumulated temperature sum affect-

ing adult phenology varies at least from �5°C to 10°C
(Pritchard et al. 1996; Valtonen et al. 2011). This resulted

in 288 different GDD indices (16 base temperature times

18 summation periods).

Previous modelling studies focusing on moth phenol-

ogy that included the focal species of our work have

Figure 1. Annual life cycle of the five focal moth species (Orthosia gothica, Ectropis crepuscularia, Cabera exanthemata, Dysstroma citrata and

Operophtera brumata) and timing of natural phenomena observed with remote sensing and used in this work. The figure represents a typical

phenological sequence during an average year in the southern part of Finland.
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reported variable base temperatures used in calculations

of the temperature sums. For example, Valtonen et al.

(2011) reported the base temperatures of �5°C and 2°C
for Dysstroma citrata and Orthosia gothica, respectively.

By contrast, Valtonen et al. (2014) reported the following

base temperatures: �5.8°C and �6.0°C for Orthosia goth-

ica, 1.9°C and 2.4°C for Ectropis crepuscularia, and 3.2°C
for Cabera exanthemata. Thus, base temperatures that

produce the best model fit vary from model to model

and are also dependent on what variables are included in

the model.

Remote sensing variables

Three kinds of remote sensing products were used in the

phenology modelling:

(1) Date of snow melt in spring was derived for each trap

site from time series of daily Pan-European Fractional

Snow Cover (FSC) products from CryoLand (Coper-

nicus Service Snow and Land Ice, http://www.cryola

nd.eu/), available for the years 2001–2016 (Nagler

et al. 2015). A particular method for extraction of

melt-off day despite the gaps in the FSC time series

(due to cloudiness that prevent the observations) was

developed at the Finnish Environment Institute

(SYKE) (Mets€am€aki et al. 2017). The actual method

for FSC retrieval from satellite imagery (NASA Terra/

MODIS, Moderate Resolution Imaging Spectrora-

diometer, in the case of CryoLand) was also developed

at SYKE (Mets€am€aki et al. 2005, 2012), and comple-

mented by a latitude-dependent adjustment related to

snow-free ground detection rules within the CryoLand

project. Temporal resolution of the snow melt date is

1 day, but days missing due to cloudiness cause some

uncertainty in the estimate. Our investigations cover-

ing CryoL and FSC time series and the corresponding

in situ observations on snow depth for 2001–2016
show that for Finland the mean absolute difference

(melt-off day based on FSC–melt-off day from in situ)

is less than 5 days, with bias of ~2.7 days. The positive

bias indicates that CryoLand FSC-based melt-off day

is slightly overestimated (i.e. delayed) compared to the

in situ-observed melt-off day, the latter indicated by

the first day of 0 cm snow depth starting the snow-

free season.

(2) We selected the NDWI for the determination of the

greening date of deciduous species in Finland because

its detection from NDVI can be affected by snow

melt in boreal areas (Moulin et al. 1997; Delbart

et al. 2006). Instead, the NDWI decreases during

snow melt and increases during the greening up (Del-

bart et al. 2005), and thus the effect of snow on the

observed greening date can be reduced. The date of

greening of the vegetation in Finland was determined

from MODIS-derived time series of the NDWI fol-

lowing the method of Delbart et al. (2005) and fur-

ther described in B€ottcher et al. (2016). The greening

date was calculated for MODIS pixels with vegetation

cover. The vegetation cover per MODIS pixel was

estimated from the national CORINE Land Cover

2006 raster product with a spatial resolution of 25 m

provided by the Finnish Environment Institute

(2009). We took into account all vegetated land cover

types. Both understory growth and canopy phenology

contribute to the land surface greening observed from

the NDWI. Their respective contributions depend on

canopy closure, sun and view angles and understory

type. At a southern boreal site in Finland the contri-

bution of the understory reflectance was below 30%

in the near infrared at the beginning of the growing

season in May for different stand types (Rautiainen

and Lukes 2015). The vegetation development in

spring in boreal forests Finland occurs during a very

short time interval and there is no mismatch in the

seasonal development of understory and the forest

canopy (Rautiainen et al. 2011). The resolution of

the greening date maps is 0.05°9 0.05°. Temporal

resolution of the NDWI is 1 day, but days missing

due to cloudiness cause some uncertainty in the esti-

mate of the greening date. For years 2001–2012,
depending on the location, in average 34–73% of

daily observations were missing during the period of

April–July. The greening date was then extracted in

the satellite map from the closest pixel to the trap

site. These data are available for the years 2001–2012.
The greening date in deciduous forests shows good

correspondence (RMSE 1 week) with the date of

birch bud break in Finland (B€ottcher et al. 2016).

(3) Fraction of Absorbed Photosynthetically Active Radi-

ation (FAPAR)-derived dates of start (FSGS), peak

(FMD) and end (FEGS) of growing season were

acquired from the Joint Research Centre (JRC) data-

sets (Gobron et al. 2006; Jung et al. 2008; Ceccherini

et al. 2013b, 2014), and extracted at each trap site.

The FAPAR used in this study covers the period from

January 1998 to December 2012 using harmonized

SeaWiFS and MERIS datasets with a nominal spatial

resolution of 1.5 km (Gobron et al. 2006; Ceccherini

et al. 2013a). The FAPAR values correspond to the

10-day time composite products spatially averaged

over 3 x 3 pixels around the trap sites for FSGS and

FEGS. For FMD, FAPAR values were derived for the

pixel overlapping with the trap site.

Examples of timing of the peak flight periods of the

focal moth species, snow melt-off dates (SMD), vegeta-

tion greening dates derived from the NDWI and dates of
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FAPAR start (FSGS), peak (FMD) and end (FEGS) of the

growing season are presented in Figure S3. In order to

compare the predictive power of models built using dif-

ferent variables, datasets of moth phenology, climatic

variables and remote sensing variables were combined for

the period 2003–2011. The impact of data availability on

the amount of peak flight observations in the five focal

species is shown in Table 1. Cross-correlations among the

explanatory variables in all five focal species are shown in

Table S1.

Modelling methods

An overview of datasets used and analysis steps conducted

for deriving predictive models of moth phenology is pre-

sented in Figure 2. Details of modelling methods are

described in the following paragraphs.

Comparing predictive power of different variables

Peak flight dates of each focal moth species were related

to explanatory variables using linear mixed effect models

(LMM) (Venables and Ripley 2002). Explanatory variables

tested for all focal species included latitude and thermal

sum (GDD), whereas the inclusion of remote sensing

variables differed depending on timing of the peak flight

period of the species in question (Table 2). A single GDD

index for each species was selected by minimizing the

value for the Akaike Information Criterion (AIC; Burn-

ham and Anderson 2002) in univariate LMMs of the 288

GDD indices as explanatory variable.

The performance of LMMs was evaluated for both total

models including all explanatory variables and for univari-

ate models, that is, models including one variable at a time.

This was done in order to determine the proportion of

variation in timing of the peak flight periods that may be

explained by all variables and the explanatory power of

individual variables, respectively (e.g. Guisan and Zimmer-

man 2000). For this purpose, data were randomly divided

into two sets in each five focal species: model fitting (70%

of the data) and model validation (30%). This was done in

order to allow for independent evaluation of model perfor-

mance (i.e. predictive power). Predictive power was calcu-

lated here as the proportion of explained variance (r2) in

the model testing part (30%) of the data (Guisan and Zim-

merman 2000). Calculation of predictive power was done

with models either excluding (i.e. producing an average

prediction across sites by setting ‘level = 0’, see Pinheiro

et al. 2014) or including site information as a random

effect term. This was done in order to get an estimate of

what proportion of the predictive power is due to the

observational site and what proportion is due to the varia-

tion in the explanatory variable; with higher proportion of

the latter expected to produce more reliable spatial predic-

tions. This choice was done because calculation of an aver-

age prediction across large spatial scales is often more

useful so that the general trend in phenology patterns will

not be masked by local variation that is due to, for exam-

ple, microclimatic factors. All LMMs were fitted as imple-

mented in the nlme library, version 3.1-121 (Pinheiro et al.

2014) within the R statistical environment, version 3.2.2 (R

Core Team, 2015).

Producing spatial predictive maps of peak flight
period

In order to produce spatial predictive maps of timing of the

peak flight period for the focal species, we selected the total

model including all variables and the single variable which

showed reasonable predictive power (r2 > 0.3) in each

respective species, that is, snow melt-off date in one species

(Orthosia gothica) and vegetation greening date in another

species (Ectropis crepuscularia) (Table 2). Spatial predictions

were derived with the models excluding site information

(Table S2), as described above. Maps showing the spatial

distribution of the peak flight date in Finland were pro-

duced for the average period 2001–2013, an example year

for an early peak flying period (2007) and an example late

year (2006), chosen on the basis of a high and a low March–
May mean temperature, respectively. In addition, an average

prediction for 2001–2013 based on weekly accumulating

thermal sum (i.e. GDD index with summation period start-

ing on 1 January) was produced for both species. Thus,

seven prediction maps are presented for both species.

To produce maps based on all variables, the input

datasets were re-sampled to a common latitude–longitude
grid at a spatial resolution of 0.05 9 0.05 degrees. The

Table 1. The number of peak flight observations in the selected 51

sites and across the five focal species with different limitations of

data.

Species

Total number

of flight period

observations in

1993–2012

Number of

peak flight

observations

in 1993–2012

Peak flight

observations

in 2003–2011

with remote

sensing data

Orthosia

gothica

3644 790 282

Ectropis

crepuscularia

2291 608 220

Cabera

exanthemata

4176 704 231

Dysstroma

citrata

5890 829 520

Operophtera

brumata

2130 709 449
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maps of the greening date were smoothed and gap filled

with a median filter with a kernel size of 3 9 3 pixels

prior to the application of the multivariate model. For

FSGS the mean of the period 2001–2011 was used for the

calculation of the average prediction maps for 2001–2013.
Selection of the GDD index is explained above (see the

section ‘Comparing predictive power of different vari-

ables’). Peak flight dates were transformed into periods of

5 days in length to facilitate drawing the maps.

Results

Comparison of variables

The predictive power (r2) of total LMMs (i.e. models

including all corresponding explanatory variables)

calculated for the five focal species varied between 0.05

and 0.60 when site information was excluded and

between 0.14 and 0.69 when site information was

included (Table 2, Fig. S4). In univariate LMMs there was

large variation in predictive power between species and

variables but in most cases predictive power decreased

markedly when site information was excluded (Table 2,

Fig. 3, Fig. S4). In the early spring species (Orthosia goth-

ica) snow melt-off date showed the highest predictive

power that was retained after exclusion of site informa-

tion (from r2 = 0.68 to r2 = 0.59) (Fig. 3A). Peak flight

of the late spring species (Ectropis crepuscularia; Fig. 3B)

was associated equally strongly with GDD and the green-

ing date of vegetation (r2 = 0.34, site information

excluded), whereas in the late autumn species (Operoph-

tera brumata, Fig. 3E), the strongest predictor of the peak

SelecƟon of model 
species 

• Widespread 
• Different flight 

periods 

Temperature 
observaƟons 

• Daily observaƟons 
1993-2012 

• Gridded data 
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• Weekly counts of 
species 

• 1993-2012 

Model tesƟng 
• Random 30% 

Model fiƫng 
• Random 70% 

Remote sensing 
data 

• Cryoland (2001-
2016) 

• Normalized 
difference water 

index (NDWI) 
(2003-2012) 

• FAPAR (1998-2011) 

SelecƟon of the 
best variables 

for each species 

Thermal sum 
• Weekly 

accumulaƟon 
• Base T species 

specific 
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phenology 

Snow melt 

VegetaƟon 
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Figure 2. Flowchart of datasets used and analysis steps conducted for deriving predictive models of moth phenology.
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flight was latitude (r2 = 0.51, site information excluded).

Peak flight periods of the mid and late summer species

(Cabera exanthemata, Dysstroma citrata, Fig. 3C–D) were

only weakly associated with the inspected explanatory

variables (r2 < 0.1, site information excluded).

Spatial predictive models

Spatial prediction maps were produced for the two spe-

cies (Orthosia gothica and Ectropis crepuscularia) for which

remote sensing variables and GDD showed meaningful

predictive power (Figs. 4 and 5). Separate predictions are

presented for a total model including all variables, a

model including one remote sensing variable with the

highest predictive power (snow melt-off date in Orthosia

(Fig. 4) and vegetation greening date in Ectropis (Fig. 5))

and a model based on an alternative variable (GDD).

Under each model, example predictions are given for an

average period of 2001–2013, a phenologically late year

(2006) and a phenologically early year (2007). For the

alternative variable (GDD) model, only an average predic-

tion of 2001–2013 is given.

In Orthosia gothica, the peak flight starts on 25–29
April in south-western Finland and shifts by 20–24 May

to the northernmost part of the country according to

average predictions for the period 2001–2013 (Fig. 4A, D,

G). In an early example year (2007) the predicted peak

flight occurred already on 15–19 April in south-western

Finland (Fig. 4C and F), whereas in a late year (2006) the

peak flight period was postponed to 30 April–4 May in

the south of the country (Fig. 4B, E). However, in 2006

the latitudinal shift in timing of the peak flight period

occurred faster than in 2007. In general, models based on

all variables (Fig. 4A–C) and models based on a single

variable (Fig. 4D–G) produced qualitatively similar spa-

tiotemporal gradients for the occurrence of the peak flight

period of O. gothica.

In Ectropis crepuscularia, the peak flight starts on 15–19
May in south-western Finland and shifts by 30 May–3
June to the northernmost part of the species range

according to average predictions for the period 2001–
2013 (Fig. 5A, D, G). In an early example year (2007) the

predicted peak flight occurred on 10–14 May in south-

ern Finland (Fig. 5C, F), whereas in a late year (2006)

the peak flight period was postponed to 20–24 May in

southern Finland but occurred then by 25–29 May

across the entire distributional range in Finland (Fig. 5B,

E). In contrast to O. gothica, in E. crepuscularia models

based on all variables (Fig. 5A–C) predicted longer spa-

tiotemporal gradients for the occurrence of the peak

flight period than did models based on a single variable

(Fig. 5D–G).

Table 2. Predictive power (r2) of linear mixed effect models (LMM) for the peak flight date in the randomly selected validation part (30%) of the

data.

Species

Total model

(all variables)

Latitude

(Lat)

Weekly

accumulating

growing degree

days (GDD)

Snow melt

date (SMD)

Greening

date (GD)

FAPAR start

of growing

season (FSGS)

FAPAR

maximum

date (FMD)

FAPAR

end of

growing

season (FEGS)

Orthosia gothica 0.601 0.38 0.421 0.59 0.38 0.05 — —

(0.691) (0.58) (0.601) (0.68) (0.58) (0.54)

Ectropis crepuscularia 0.462 0.17 0.342 0.19 0.34 0.00 — —

(0.462) (0.12) (0.312) (0.19) (0.39) (0.05)

Cabera exanthemata 0.053 0.05 0.013 — 0.03 0.01 0.00 —

(0.143) (0.19) (0.123) (0.18) (0.13) (0.16)

Dysstroma citrata 0.074 0.00 0.034 — — — 0.01 0.00

(0.274) (0.15) (0.274) (0.20) (0.19)

Operophtera brumata 0.485 0.51 0.045 — — — 0.01 0.01

(0.565) (0.57) (0.555) (0.56) (0.55)

The weekly accumulating GDDs depict the base threshold temperature (Tb) used in the calculation as well as the date (DOY) that was selected for

model calibration on the basis of Akaike Information Criterion (AIC) (see the superscripts). Predictive power is calculated for models both by

excluding (i.e. by producing predictions averaged across sites) and by including site information (as a random effect term, in brackets). – indicates

that the variable was not included in the respective model.

Weekly accumulating GDD parameters:
1Base temperature (Tb) = �5°C, summation period day-of-the-year (DOY) = 1–210.
2Tb = 9°C, DOY = 1–133.
3Tb = 10°C, DOY = 1–133.
4Tb = 10°C, DOY = 1–210.
5Tb = 6°C, DOY = 1–112.
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Discussion

The feasibility of remote sensing data in modelling and

predicting phenology of animal species has received only

little attention (cf. Roy et al. 2001; Nietschke et al. 2007;

Hodgson et al. 2011). This is surprising considering that

such methods are potentially very useful in the field of

applied ecological sciences, including management of nat-

ural resources (White and Nemani 2006). Previously,

earth observation products have been used to detect forest

defoliations caused by pest species such as gypsy moth

(Lymantria dispar; de Beurs and Townsend 2008; Spruce

et al. 2011; Foster et al. 2013) and autumnal moth

(Epirrita autumtata; Jepsen et al. 2009a; Babst et al. 2010;

Olsson et al. 2016). Based on similar methodology, Trier-

weiler et al. (2013) and Sweet et al. (2015) developed

NDVI-based models predicting overall temporal abun-

dance of canopy arthropod biomass of grasshoppers and

defoliation of birch trees, respectively, but they did not

attempt predicting phenology of individual species. With

our work, we provide first tools towards a more wide-

spread application of remote sensing datasets in mod-

elling phenology of heterotrophic animal species and

producing practical applications of spatial predictions.

According to our results, predictive ability of different

variables is strongly affected by species identity. Notably,

only in the species flying in early spring (Orthosia gothica)

and late spring (Ectropis crepuscularia), remote sensing

variables show good predictive power. In the three other

species, however, none of the temperature-derived (i.e.

thermal sum) and remote sensing variables showed mean-

ingful predictive power. This result indicates that remote

sensing variables are more clearly correlated with pheno-

logical patterns of those species in which the flight period

coincides with distinguishable natural events such as snow

melt or vegetation greening, which can easily be observed

using remote sensing techniques. Thus, flight periods of

these species also show potential in monitoring the

impacts of climate change. For species that have their

activity period in other parts of the season, it may be
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Figure 3. Predictive power of linear mixed effect models (LMM) including the single explanatory variable that showed the highest r2 value in the

randomly selected 30% of the data across the five focal species: (A) Orthosia gothica, (B) Ectropis crepuscularia, (C) Cabera exanthemata, (D)

Dysstroma citrata and (E) Operophtera brumata. All panels show dots for observed versus predicted values of peak flight dates, with black dots

excluding (i.e. average prediction where level = 0) and open dots including site location in predictions. Red solid lines and dotted lines depict the model

fits when site location is excluded (upper r2 value) and included (r2 value in parentheses), respectively, and black line depicts the identity line y = x.
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necessary to develop novel indicators based on remote

sensing.

In general, it appears that predictive models do not

fully describe the spatial gradient of moth peak flight.

Model predictions generally showed a smaller range of

values compared to observations, as can be seen by too

late predictions of peak flight date for the south of Fin-

land and too early predictions in northern Finland

(Fig. 3, Fig. S4). Moreover, predictive power of the

majority of investigated models decreased considerably

after excluding the site information (represented as the

random effect term) from the predictions (cf. Pinheiro

et al. 2014). This indicates that the variables included in

such models were not useful for making spatial predic-

tions for the whole country, but instead their predictive

power was more closely related to the knowledge about

exact locations of sites used in the model calibration. The

choice of calculating an average prediction across large

spatial scales was justifiable here because we were inter-

ested in the general trend in phenology patterns, which is

not masked by local variation caused by, for example,

microclimatic factors.

The predictive power of thermal sum, measured as GDD

with varying base temperatures and summation periods,

showed less variation across species when compared to

remote sensing variables, but only when site information

was included in spatial predictions. This indicates that tem-

perature controls a large proportion of variation in timing

of the flight period in these species, but this effect is also

strongly dependent on local climatic variation. This is a

Figure 4. Maps of the peak flight periods for Orthosia gothica: predictions made on the basis of the total model including all variables for (A) an

average period of 2001–2013, (B) a phenologically late year (2006), (C) a phenologically early year (2007); predictions made on the basis of snow

melt-off date for (D) an average period of 2001–2013, (E) a phenologically late year (2006), (F) a phenologically early year (2007) and (G) an

average prediction for 2001–2013 based on an alternative variable (weekly accumulating growing degree days). Model formulas are presented in

Table S2. Data sources: Country borders © ESRI, Lakes © SYKE, Biogeographical provinces ©LUOMUS and SYKE.

ª 2017 The Authors Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9

J. P€oyry et al. Modelling Moth Phenology With Remote Sensing Data



clear drawback in using temperature-derived variables in

spatial predictions because large-scale spatial predictions

are typically done without site information to avoid the

general latitudinal trend being masked by the local varia-

tion. Previous studies have suggested that thermal controls

determine timing of the flight period in a majority of moth

species, and thus our results are only partly consistent with

earlier studies (Valtonen et al. 2011, 2014).

The uncertainty of model predictions may stem from

different sources, one of which being the differences in

the temporal accuracy between the datasets deployed in

the modelling, a factor that applies to both moth observa-

tional data and explanatory variables. The light traps used

in collecting moth observational data are emptied usually

once a week, but for logistic reasons there is some

additional variation in the length of the observational

period. Thus, the temporal inaccuracy around the mid-

day of the peak flight period calculated as average length

of observational period divided by two varies between

3.67 and 4.26 days depending on the species identity.

GDD indices defined with weekly varying summation

periods were tested, but the spatial resolution

(10 km 9 10 km) and the representativeness of the

underlying meteorological station network maybe too

coarse to capture some of the microclimatic conditions at

the trap sites. However, it is difficult to estimate this

exactly. Onsite temperature observations made at the trap

sites would probably increase predictive power of GDD

indices, but such data were not available in this study. In

the future, more fine-grained gridded temperature

Figure 5. Maps of the peak flight periods for Ectropis crepuscularia: predictions made on the basis of the total model including all variables for

(A) an average period of 2001–2013, (B) a phenologically late year (2006), (C) a phenologically early year (2007); predictions made on the basis

of the vegetation greening date for (D) an average period of 2001–2013, (E) a phenologically late year (2006), (F) a phenologically early year

(2007); and (G) an average prediction for 2001–2013 based on an alternative variable (weekly accumulating growing degree days). Model

formulas are presented in Table S2. Data sources: Country borders © ESRI, Lakes © SYKE, Biogeographical provinces ©LUOMUS and SYKE.
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products may become available and in part alleviate the

shortcomings caused by too coarse scale of the gridded

datasets.

By contrast, all the remote sensing datasets show an

inherent temporal uncertainty. Snow melt and greening

dates are estimated with the precision of 1 day, but in

both cases missing observations stemming mainly from

cloudiness cause some uncertainty that varies from year

to year and by region depending on weather conditions.

This is estimated to be ca. 5 days for snow melt date

(Mets€am€aki et al. 2017), depending on the general snow

cover conditions, that is, whether the area has a consis-

tent seasonal snow cover or only sporadic snow occur-

rences. However, Mets€am€aki et al. (2017) demonstrate

that compared with microwave data-based melt-off day

information (which is not affected by such data gaps), the

year-to-year trend of melt-off day is very similar. We can

therefore expect that the inaccuracies obtained by using

optical data such as MODIS do not have a remarkable

effect on the results presented in this study. For the

greening date, NDWI time series were interpolated at a

daily time step and time series with a temporal gap larger

than 2 weeks were discarded in the detection (B€ottcher

et al. 2016). The FAPAR dates for the start, maximum

date and end of the growing season are obtained from

10-day products, and thus uncertainty is 5 days. Greening

date and FAPAR growing season start date showed low

correlation for the trap site locations in Finland

(Table S1), although both satellite indices track the devel-

opment of new foliage in the footprint of the satellite

pixel. The satellite-based detection of the greening up of

vegetation in Finland is challenging due to long periods

of snow and cloud cover, fast vegetation development in

spring and dominance of evergreen coniferous forest (e.g.

Beck et al. 2006). The daily temporal resolution of the

NDWI time series may be an advantage in this respect.

Furthermore, the method for the greening date detection

was targeted at and evaluated in boreal areas previously

(see Delbart et al. 2006; B€ottcher et al. 2016).

Data availability limits the applicability of using remote

sensing variables when compared to temperature-derived

variables. In the case of our work, all the remote sensing

variables were available only for a part of the period

(2003–2011) for which moth phenology data would be

available (1993–2012). Although lack of datasets may be a

major shortcoming in older time periods, the importance

of this factor will diminish by time and continuing collec-

tion of data by satellites. The longer satellite data time

series provided by TM (Thematic Mapper, 1984–2013)
ETM+ (Enhanced Thematic Mapper Plus, 1999–present)
and OLI (Operational Land Imager, 2013–present) on-

board Landsat 5, Landsat 7 and Landsat 8, respectively,

can be used in estimating the vegetation phenology and

with higher spatial resolution than moderate-resolution

sensors such as MODIS. Despite the temporally sparse

and spatially scarce nature of TM and ETM+ acquisitions,

for example, a Bayesian approach introduced by Senf

et al. (2017) maps the variation and temporal year-to-

year changes in phenological events in a way that over-

comes these deficiencies. Although their study was limited

to a restricted area, such a technique is worth further

investigation with longer phenological time series.

The impact of latitude was observed in the two species

flying either in spring (O. gothica) or late autumn (O.

brumata). This is not surprising as both species show a

clear latitudinal gradient in timing of their peak flight

period (Fig. S2). It has not been analysed how widespread

latitudinal gradients in timing of the flight periods are in

European moths, but in butterflies a majority of species

show a shift towards later timing in the north (Roy and

Asher 2003). However, it may be expected that moth spe-

cies that have their flight season in the autumn will shift

their flight period later towards the south (e.g. P€oyry

et al. 2011).

The species sample included in this study was tempo-

rally representative, including one species flying at differ-

ent times of the North European warm season, but yet

quite limited in numbers. Thus, future studies focusing

on a larger species set are required to verify the tentative

observations made in this study. Moreover, previous stud-

ies have shown that in certain moth species, phenology is

predominantly controlled by photoperiod (i.e. day

length), or thermal controls are modified by photoperiod

(see Valtonen et al. 2014). Although day length was

included in models indirectly through latitude, it would

be interesting to explore if predictive power of phenology

models might be increased by accounting explicitly for

photoperiod.

The spatial prediction methods demonstrated in this

work allow for the prediction of timing of the peak flight

periods of herbivorous insects, as exemplified here by

moths, on the basis of both earth observation data and

temperature observations. Such methodology has poten-

tial for application in other insect groups and extension

to larger geographical areas. This enables also effective use

of remote sensing variables (snow melt, greening) over

large geographic areas in explaining phenology, when spe-

cies-specific characteristics such as timing of flight period

are taken into account. There are also widespread practi-

cal applications, for example, in supporting the achieve-

ment of the Aichi targets of biodiversity conservation,

one of which being the development of new methodolo-

gies for monitoring of phenology in terrestrial ecosystems

(CBD, 2014) and the monitoring, prediction and manage-

ment of populations of insect pest species (e.g. Olsson

et al. 2016).
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Table S1. Pearson correlation coefficients among the

explanatory variables for each focal species.
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