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a b s t r a c t

To assess the long-term impacts of forest management interventions under climate change, process-
based models, which allow to predict transient dynamics under environmental change, are arguably
the most suitable tools available. A challenge for using these models for management decisions, however,
is their higher parametric uncertainty, which propagates to predictions and thus into the decision-
making process. Here, we demonstrate how this problem can be addressed through Bayesian inference.
We first conduct a Bayesian calibration to generate an estimate of posterior parametric uncertainty for
the process-based forest growth model 3-PG for Fagus sylvatica. The calibration uses data from twelve
sites in Germany, together with a robust (Student’s t) error model. We then propagate the estimated
uncertainty together with economic uncertainty to forest productivity and Land Expectation Value
(LEV), allowing us to evaluate alternative management regimes under climate change. Our results
demonstrate that parametric and economic uncertainty have strong impacts on the variation of predicted
forest productivity and profitability. Management regimes with increased thinning intensity were overall
most robust to economic, climate change and parametric model uncertainty. We conclude that estimat-
ing and propagating economic and model uncertainty is crucial for developing robust adaptive manage-
ment strategies for forests under climate change.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

European beech (Fagus sylvatica L.) is the most abundant broad-
leaved tree species in Central Europe (Bohn et al., 2003; Ellenberg,
1996). Due to its high shade tolerance, it would naturally dominate
large parts of the region, particularly in Germany (Christensen
et al., 2005). In the recent past, markedly during the last 200 years,
large areas originally dominated by beech forests were replaced by
faster growing conifer species, e.g. Norway Spruce (Picea abies) and
Scots Pine (Pinus sylvestris), with the aim of reestablishing forests
on degraded land, increasing forest profitability and supplying
wood for the forest industry (Spiecker, 2003). The focus of forest
management, however, has shifted during the past decades
towards a multipurpose approach. A consequence of this change
in values is an increasing interest in recovering the naturalness
of European forests. Efforts are thus being made to adopt close-
to-nature management systems, increase the complexity of forest
stands and promote the natural vegetation (Brunet et al., 2010).
The restoration of natural forest composition is also motivated by
the objective to recover forest biodiversity and ecosystem func-
tioning in degraded forests ecosystems (Burton and Macdonald,
2011). For example, the forest administration of Baden-
Württemberg describes beech-dominated forests as an especially
valuable forest type, due to its perceived closeness to nature and
connectivity function. Therefore, the long-term goal of the forest
administration is to increase the proportion of this type of forests
(LFBW, 2014).

One of the most important management recommendations for
forest restoration and rehabilitation is restoring the species com-
position and stand structure of natural forests (Halme et al.,
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2013). At the same time, however, when planning an increase of
the share of Fagus sylvatica, it is crucial to take into account future
climate development (Ravenscroft et al., 2010). Climate change is
predicted to affect important forest processes, such as carbon
assimilation, water balance, nutrient cycling, species distributions
and disturbance regimes (Davis et al., 2017; Laflower et al., 2016;
Pan et al., 2011; Seidl et al., 2014; Tarancón et al., 2014). Hence,
it is crucial for managers and decision-makers to evaluate the
behavior of beech stands under climate change, assess the suitabil-
ity of forest policies targeted at increasing the share of this species,
and avoid risks that might lead to a loss of ecosystem functioning
or profitability.

Arguably the most suitable tool to assess the impacts of novel
climatic conditions on forest ecosystems are process-based forest
models. The advantage of these models over more empirical or sta-
tistical models is that they are built on explicit processes and inter-
actions in forest ecosystems that describe not only demography
and stand structure, but also carbon, water and nutrient cycles
(Busing et al., 2007; Friend et al., 1997; van Oijen et al., 2005). As
such, they should be better suited to predict forest responses to
environmental changes (e.g. alterations in atmospheric CO2, pre-
cipitation regimes, air temperature, nitrogen deposition, etc.), as
well as transient dynamics (Hartig et al., 2012). Because of these
advantages, many studies have applied process-based forest mod-
els at different spatial and temporal scales for evaluating forest
responses to climate change (e.g. Koca et al. 2006; Morin and
Thuiller, 2009; Rollinson et al., 2017), risks related to climatic
changes (e.g. Allen et al., 2010; Cailleret et al., 2014; Soja et al.,
2007) forest productivity (e.g. González-García et al., 2016)
or shifts on species distribution (e.g. Morin et al., 2007; Snell
et al., 2014).

For forest management, one of the most important outputs of
these models is productivity in biomass and wood volume. Produc-
tivity is not only decisive for the commercial value of the forest
(Liang et al., 2016), but typically also correlates with other impor-
tant ecosystem services (Bonan, 2008; de Groot et al., 2002; Tilman
et al., 2012). Forest managers can use productivity estimates to
plan and evaluate different management options and adjust man-
agement plans accordingly (Temperli et al., 2013). To predict pro-
ductivity under environmental changes, process-based models are
of particular interest, because they allow deriving key variables,
such as stem volume, stem biomass and carbon sequestration.
Although stand-level forest growth models are typically simpler
than fully-fledged physiological gap models, they still commonly
use numerous parameters that determine the behavior of a range
of interacting processes in the model. Not all of these parameters
are well-known, and it can be expected that parameters may also
vary regionally with provenances and growing conditions (Moran
et al., 2016). The resulting parametric uncertainty should be prop-
agated to the models’ predictions, meaning that a sensible eco-
nomic analysis will have to consider that a range of possible
model outcomes exists, and each of those could lead to very differ-
ent management implications. For developing robust management
plans, it is therefore crucial to quantify and account for this para-
metric model uncertainty (Reyer et al., 2016).

One of the best-developed frameworks for estimating and prop-
agating parametric model uncertainty is Bayesian inference. In a
nutshell, Bayesian inference is a statistical method that allows
expressing, estimating and propagating uncertainty, represented
by probability distributions, for each variable of interest in a
model, including parameters and model predictions (Hartig et al.,
2012; Lichstein et al., 2010). As such, it provides a natural way to
compute parametric model uncertainty and subsequently forward
it into economic models of forest profitability, e.g. net present
value (NPV) or land expectation value (LEV) (Cyert and DeGroot,
1987; Dorazio and Johnson, 2003). As an additional advantage,
the Bayesian framework also seamlessly allows including uncer-
tainty in input and drivers of the model. This means that climate
change uncertainty, one of the main issues faced by forest man-
agers, can be integrated with parametric model uncertainty in
the planning process (Hallegatte et al., 2012; Pasalodos-Tato
et al., 2013). Applying this framework in combination with risk
analysis enables the selection of robust forest management alter-
natives, which perform well regardless of future climate paths
(Hadka et al., 2015).

Currently, one of the most broadly applied physiology-oriented
process-based model is 3-PG (Three Physiological Principles Pre-
dicting Growth), developed initially by Landsberg and Waring
(1997). 3-PG predicts stand productivity based on photosyntheti-
cally active radiation (PAR) and canopy quantum efficiency. The
canopy quantum efficiency is constrained by environmental fac-
tors, such as temperature, water availability, vapor pressure deficit,
stand age and fertility (Almeida et al., 2004b; Landsberg et al.,
2001a). The Net Primary Productivity (NPP) is obtained as a con-
stant rate of the Gross Primary Productivity (GPP), and the carbon
is allocated to different tree components, according to specific
ratios (Amichev et al., 2011). Promoted by its easy accessibility,
flexibility and the limited number of parameters, 3-PG has been
applied to assess forest productivity of a variety of species and sites
(e.g. Fontes et al., 2006; Landsberg et al., 2003; Minunno et al.,
2010; Nightingale et al., 2008). Moreover, the model has been suc-
cessfully calibrated for temperate forest species applying a Baye-
sian approach (e.g. Minunno et al., 2010; Xenakis et al., 2008).

Considering the importance of developing robust management
scenarios for beech forests, the main goals of this study are: (1)
To calibrate 3-PG for beech stands in Germany and evaluate the
fit of the model and accuracy of the model’s predictions; (2) eval-
uate the impacts of uncertainty on forest productivity and prof-
itability under climate change and (3) to identify robust
management regimes towards climate, economic and parametric
model uncertainty.

The calibration was performed with a data set composed of
intensively monitored permanent inventory plots. The data pro-
vided various standard inventory variables, including stand den-
sity, stand diameter at breast height (DBH), stand height,
standing volume; and site parameters, including climate and soil
characteristics. We applied allometric equations for deriving foli-
age, root and stem biomass of each plot. For the calibration, we
used Bayesian inference, to estimate parameters uncertainty from
direct information (prior) and indirect information (model out-
puts). We then forwarded the parametric uncertainty to posterior
model predictions (e.g. for stand biomass and volume). We used
the results to evaluate the impacts of parametric model uncer-
tainty on the profitability of beech stands under climate change,
in terms of Land Expectation Value (LEV), Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR) of alternative management
regimes.
2. Material and methods

2.1. The 3-PG model

The 3-PG model is based on two main sets of calculations: (1)
defining the biomass increment and (2) allocating the growth to
different tree compartments, determining the growth pattern of
the stand (Landsberg et al., 2001b). These calculations are
performed in five submodels (Forrester and Tang, 2016): (1) a
carbohydrate assimilation submodel, computing the gross primary
productivity (GPP) based on the photosynthetically active radia-
tion (PAR) intercepted by the forest stand and the canopy quantum
efficiency. The canopy quantum efficiency is constrained by
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environmental factors, such as vapor pressure deficit (VPD), water
availability and temperature. The Net Primary Productivity (NPP) is
then calculated based on a fixed rate of the GPP (Almeida et al.,
2004a); (2) the second submodel allocates the NPP into different
tree compartments, starting with roots, followed by stem and foli-
age. The allocation of NPP to roots is driven by site fertility and
water availability, while the allocation to stem and foliage follows
allometric relationships (Landsberg and Waring, 1997); (3) a tree
mortality submodel following the �1.5 self-thinning law and an
age and stress dependent factor (Bryars et al., 2013); (4) a soil
water balance submodel describing the water availability based
on the initial soil water, monthly precipitation, evaporation and
transpiration. Transpiration is calculated based on the Penman–
Monteith equation and the evaporation accounts for the water
interception by the canopy (Waring et al., 2014); (5) a submodel
to calculate stand variables of management interest, e.g. stand
height, basal area, volume, stem biomass, among others (Esprey
et al., 2004).

The model operates on a monthly time step. It requires as input
basic climatic variables (vapor pressure deficit, number of frost
days, precipitation and solar radiation), stand structure (age, num-
ber of tress per hectare, foliage biomass, roots biomass and stem
biomass), indication of site fertility and management history (age
of thinning, thinning intensity, number of stems per hectare of
remaining stand) (Almeida et al., 2004b; Landsberg et al., 2005).

3-PG was initially developed for simulating stands of evergreen
forest plantations. Therefore, its original form does not consider
deciduous species. Two approaches were applied to include the
ecology of deciduous dynamics into 3-PG. The first approach,
applied by Potithep and Yasuoka (2011), interrupts the functioning
of trees during the winter months. The second approach, devel-
oped by Forrester and Tang (2016), models the stand development
of deciduous species through the inclusion of two additional
parameters into the model, namely the month of leaf fall and the
month of leaf production. Between the months of leaf fall and leaf
production, the leaf biomass is reduced to zero and no photosyn-
thetic active light is absorbed, thus setting the GPP to zero. In the
month of leaf production, the same leaf biomass lost in the month
of leaf fall is recovered, with the complete allocation of NPP to leaf
biomass, until the leaf biomass is recovered. Subsequently, the
remaining NPP partitioning follows as usual. In this study, we used
the approach proposed by Forrester and Tang (2016) because it
describes more accurately the process involved in the leaf fall
and leaf production in a beech stand.

2.2. Data

We calibrated the 3-PG model based on data from 12 inten-
sively monitored plots in Germany. Sites 1–6, 13 and 14 are located
in Southern Baden-Württemberg and were inventoried twice, with
a 13-year interval between measurements. Data regarding stand
density, DBH, height and volume was recorded, as well as climate
and soil parameters. Sites 7–12 and 15–17 are part of the Interna-
tional Co-operative Programme on Assessment and Monitoring of
Air Pollution Effects on Forests (ICP Forests) level II plots in Ger-
many (ICP, 2010) and were inventoried every 3–5 years. Table 1
reports the initial characteristics of each plot, including stand
age, tree number, stand diameter (DBH), stand height and standing
volume for the sites used for calibration. The plots included in our
study had different monitoring periods, ranging from 8 to 43 years,
generating in total 56 observations for each of the previously men-
tioned variables. For initialization, the model requires monthly cli-
mate data, soil data and initial values for stem, root and foliage
biomass. For sites 1–6 and 12–14 the climate and soil data were
measured in situ. For the remaining sites, the climate data was
retrieved from the German Weather Service (DWD), based on
spatially interpolated data reported for the whole country in a
1 km � 1 km grid and soil information was retrieved from the Soil
Maps and Databases from the Federal Institute for Geosciences and
Natural Resources (BGR). For all sites, the leaf, root and stem bio-
mass were calculated using allometric equations, compatible with
the DBH and height range of the dataset, reported in Wutzler et al.
(2008) (details in Appendix A).

2.3. Bayesian calibration

2.3.1. The Bayesian framework
Bayesian inference of process based forest growth models has

gained attention during the past decade, with applications to a
broad range of models and tree species (e.g. Hartig et al., 2014;
van Oijen et al., 2013). The Bayesian approach provides a frame-
work for estimating parametric uncertainty in terms of probabilis-
tic distributions, thus enabling a direct quantification of parameter
uncertainty (e.g. van Oijen et al., 2005). Bayes theorem states that
the best estimate (posterior uncertainty pðhjyÞ) for a parameter
vector h given data y is given by:

pðhjyÞ ¼ pðhÞpðyjhÞ
pjy ð1Þ

Here, pðhÞ expresses our prior beliefs on possible parameter values.
These prior beliefs are modified via the likelihood function pðyjhÞ,
which calculates the probability density of observing the data, con-
ditional on the model’s parameters. It can be shownmathematically
that the additional term pðyÞ can be expressed as the integral over
pðhÞpðyjhÞ, and therefore factors out when estimating the posterior
uncertainty pðhjyÞ. The estimation of the distribution pðhjyÞ is usu-
ally done by Markov Chain Monte Carlo (MCMC) algorithms, a class
of stochastic algorithms that use a sampling scheme to construct an
approximation of pðhjyÞ.

2.3.2. Prior distribution
A far as we know, no previous attempts were performed for cal-

ibrating 3-PG for beech stands. Thus, no quantitative prior knowl-
edge regarding parameter values was available. Therefore, we
applied bounded uniform distributions for the parameter values
(see Appendix B). The minimum and maximum values for the
parameters were defined based on the ranges (maximum-
minimum) of the other 28 species that were previously calibrated
for 3-PG and 3-PGmix (Forrester and Tang, 2016). The minimum
value for each parameter was defined as the minimum value
recorded for the defined parameter, minus half of the range for this
parameter. Similarly, the maximum value was obtained through
the maximum value recorded, plus half of the range. Exceptions
were applied to parameters limited to values between 0 and 1,
and for the maximum age parameter. For the maximum age
parameter, due to the known possibility of considerably old beech
stands compared to the usual age range of species already parame-
trized for 3-PG, we applied a wider prior. Moreover, the month of
leaf fall was defined in accordance to Gressler et al. (2015) as Octo-
ber, and the month of leaf production established in accordance to
Menzel et al. (2015) as April.

2.3.3. Likelihood function
As in regression models, outliers can be problematic for a Baye-

sian analysis, because they can exert a strong influence on the
parameter estimates. To make the calibration more robust against
this problem, we applied a well-know approach from robust statis-
tical inference, which is modeling the residual error as a Student’s t
distribution with sampled degrees of freedom e � tv ð0;r2

i Þ (Lange
et al., 1989). The Student’s t distribution can be interpreted as a
scaled mixture of normal distributions and approximates the



Table 1
Initial state of the stands used for calibration. The table shows the characteristics of the stands used for calibration, including tree number, stand age, stand diameter (DBH), stand
height, standing volume and number of observations.

Site Latitude N/ha Age DBH (cm) H (m) Volume (m3/ha) Obs. number

Training dataset
1 48.0 512 70 25.6 24.7 321.0 2
2 48.0 452 70 26.8 26.7 330.4 2
3 48.0 613 70 23.5 25.8 352.0 2
4 48.0 579 80 21.3 19.1 195.7 2
5 48.0 524 80 23.0 22.9 244.0 2
6 48.0 610 80 20.5 19.8 190.6 2
7 50.1 292 123 36.3 31.7 534.7 4
8 51.2 740 77 24.7 22.9 474.4 3
9 51.4 156 141 52.3 35.2 406.9 3
10 51.7 229 168 42.2 28.2 489.2 5
11 51.7 199 114 36.0 26.8 383.4 11
12 51.8 245 120 37.4 25.2 342.0 18

Validation dataset
13 48.0 427 70 27.8 28.7 386.8 2
14 48.0 676 80 20.8 21.0 236.1 2
15 51.5 227 136 43.0 31.8 632.7 5
16 51.6 168 111 44.7 30.8 481.8 13
17 53.4 867 77 16.6 18.11 242.4 3
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normal distribution when v ! 1. Conversely, with small v , the
distribution is heavy tailed, which means that the occurrence of
outliers in the data set has smaller effects on the likelihood value.
The Student t likelihood is

pðyjhÞ ¼ PN
i¼1

Cðv þ 1Þ=2
Cðv=2Þ ffiffiffiffiffiffiffiffiffiffi

vpr
p 1þ 1

v
1ðŷi � yiÞ2

r2

" #�ðvþ1Þ=2

ð2Þ

where C: gamma function; v: degrees of freedom of output vari-
able; yi: i-th observation of output variable; ŷi: i-th simulated value
of output variable; and r2

i : variance of output variable. For the cal-
ibration, we parameterized v (Eq. (3)) as

v ¼ 1� N � Inð1� uÞ ð3Þ
which maps the degrees of freedom from 1 to 1, where N is a con-
stant, related to the probability of having outliers in the dataset
(Kruschke, 2014), defined in our case as 50. We then estimated
the parameter u with a uniform prior distribution from 0 to 1.

2.3.4. Posterior estimation
In order to estimate the posterior, we applied the Differential

Evolution Markov Chain Monte-Carlo algorithm (henceforth: DE-
MCzs). The DE-MCzs combines characteristics of conventional
MCMC methods with the ideas of differential evolution optimiza-
tion algorithms (Ter Braak and Vrugt, 2008). As discussed in Ter
Braak and Vrugt (2008), the DEMCzs method automatically adjusts
scale and orientation of the proposal distribution and uses a snoo-
ker updater, which leads to an increased efficiency compared to
‘‘conventional” MCMC methods. In order to accelerate conver-
gence, chains were initialized with a Nelder-Mead pre-
optimization, implemented in the Bayesian Tools R package
(Hartig et al., 2017).

Convergence of the MCMCs was assessed through the Gelman-
Rubin diagnostic. The Gelman-Rubin diagnostic was proposed by
Gelman and Rubin (1992) and computes the potential scale reduc-

tion factor
ffiffiffiffibRp
, the square root of between-chain and within-chain

variance. Thus, the scale reduction factor is an indication of
whether the chains still look different from each other, with a
value of 1 indicating that they look identical, at least regarding
their variance. To evaluate convergence, we computed two chains

with the DEMCzs algorithm, and required that
ffiffiffiffibRp
< 1.1 for assum-

ing that the chains are converged, i.e. they are provide a sufficient
approximation of the target distribution.
2.4. Goodness of fit

In Bayesian inference, goodness-of-fit is usually evaluated via
posterior predictive simulations, meaning that new data is simu-
lated from the model with parameters from the estimated poste-
rior distributions, and the resulting simulations are compared to
the observed data. From such posterior predictive simulations,
one can calculate standardized residuals, which essentially ask
where the observed data fall within the range of posterior predic-
tive simulations. To apply this methodology, we simulated new
data based on 1000 draws from the parameter posterior distribu-
tion, and assessed the frequency of obtaining simulated values that
were smaller/larger than observed data.

Additionally, we evaluate percentage bias and Normalized Root
Mean Squared Error (NRMSE) on both calibration and validation
data. The percentage bias (PBIAS) measures the average bias of
model’s predictions in percent. A positive value indicates model
underestimation, whereas negative values indicate model’s overes-
timation of the variables of interest. The NRMSE measures the
model accuracy, indicating the estimation error of interest vari-
ables. For computing the accuracy metrics, we simulated 1000
draws from the posterior distribution of the parameters and com-
puted the NRMSE and PBIAS based on the average response.

To account for the uncertainty introduced by the allometric
equations into the model’s projections, we computed the variance
of the leaf, root and stem biomass at stand level applying the func-
tions provided by Wutzler et al. (2008) at each month of our pre-
dictions. Subsequently, we generated 1000 random draws from a
uniform distribution and computed for each draw, the respective
quantile of a normal distribution with zero mean and standard
deviation based on each month’s corresponding variance, finally
adding these random draws to our model’s predictions.
2.5. Impacts of climate and parametric model uncertainty on forest LEV

To assess the impacts of parameter uncertainty on forest prof-
itability, we computed the LEV under changing climate for differ-
ent management regimes. The basis of our simulations was the
management regime described in the yield table for Fagus sylvatica
used in Baden-Württemberg, considering an intermediary produc-
tivity class (yield class, determined as the mean annual volume
increment at base age 100 years, equal to 6 m3/ha/year). For the
implementation of management interventions in the model, we



Table 2
Management regimes, defined by rotation length and thinning intensity. The numbers
are the identifiers for each management regime with the respective thinning intensity
(column) and rotation length (row).

Rotation
length

Thinning intensity

BAU Decreased Increased No thinning

120 1 6 11 16
130 2 7 12 17
140 3 8 13 18
150 4 9 14 19
160 5 10 15 20
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derived the number of trees and the biomass of harvested trees
compared to the average tree in the stand from the yield table.
We initialized the model with the values reported in the yield table
for a 40-year-old stand with thinning interventions every 10 years.
We applied five options for rotation length (120,130, 140, 150 and
160 years) in combination with four thinning intensity options (no
thinning, business-as-usual (BAU), increased thinning intensity
and decreased thinning intensity) generating in total 20 alternative
management regimes (Table 2). The management for decreased
and increased thinning intensity was defined by increasing and
decreasing the biomass fraction of thinned trees in relation to
the biomass of the average tree in the stand and the number of
remaining trees by 30% compared to the values applied in the
BAU management (Fig. 1). The number of trees under the no-
thinning management resulted from the natural development of
the stand, i.e. governed by the occurrence of natural mortality
due to environmental pressures and density dependent mortality
according to the -1.5 thinning rule. This rule is a log-log relation-
ship between size and density that describes the mortality of
crowded even-aged stands, commonly displaying slope of �1.5
(Weller, 1987).

For the further analysis, we calculated model outputs for the
amount of wood extracted from the stand by thinning and final
harvesting, for a climatically typical stand located in Tuttlingen
48.0N, 8.75 E (Baden-Württemberg, Germany), under 12 climate
change trajectories, as a combination of the ISI-MIP Regional Cli-
mate Model – RCM and 3 Global Climate Models - GCM
(HadGEM2-ES, IPSL-CM5A-LR and NorESM1-M), considering the
representative concentration pathways (RCP) 2.6, 4.5, 6.0 and 8.5.
Fig. 1. Prescribed number of remaining trees according to stand age for different
thinning schemes.
To forward parametric model uncertainty, we generated 1000
draws from the posterior distribution for each of the 12 climate
change trajectories, added the variability introducedby the allomet-
ric equations and computed the posterior predictive distribution for
Land Expectation Value (LEV) of the 20 management regimes.

To account for economic uncertainty, we fitted a lognormal dis-
tribution of real wood prices for each assortment class during the
period 2004–2016 in Baden-Württemberg. We then generated, for
each posterior draw and thinning period, a random draw from the
correspondent distribution with zero mean and added it to the cur-
rent wood prices. Similarly, we considered three options for dis-
counting schemes, applying a risk free interest rate of 1, 2 and 3%,
and subsequently including uncertainty on the risk component of
interest rate applied by managers. To this end, at each posterior, a
random draw from a normal distribution with expected values
equal to 2, 3 and 4% truncated at ±50% of the expected value was
considered. We applied a 0.9% standard deviation, according to
Brousseau and Durré (2013). This standard deviation refers to con-
sol bonds volatility, which is a suitable proxy to long term interest
rates, being thuswell suited to long term investments, such as forest
investments. Therewith, we examined a range of possible discount-
ing schemes applied by forest managers, according to their risk per-
ception, with interest rates supported on [0.01, 0.03], [0.02, 0.04]
and [0.03, 0.05]. Initialmaintenance costswere computed according
to Hanewinkel et al. (2010) and corrected by the inflation rates. We
assumed no planting costs, as beech stands are established through
natural regeneration in the region. We defined net wood prices
based on harvesting costs reported by Härtl et al. (2013). The price
was calculated based on the stand DBH, using the average of the
prices of the nearest two assortment classes (see details in Appendix
C). Additionally, in order to identify which model parameters had
themost influence on the LEV variation, we regressed posterior pre-
dictive LEV values for management alternatives 5, 10, 15 and 20
with a 160-years rotation length against the respective posterior
parameter, using a random forest algorithm (R package ran-
domForest, see Breiman, 2001; Liaw and Wiener, 2002).
2.6. Robust optimum management regimes under uncertainty

To identify the most suitable management regime under cli-
mate and parametric model uncertainty, we evaluated the robust-
ness of each management regime by empirically computing the
mean LEV, the Value-at-Risk (VaR) and the Conditional Value-at-
Risk (CVaR) for all management alternatives under the 12 climate
trajectories.

The VaR is commonly applied in portfolio optimization (Ben-Tal
et al., 2009). By seeking the highest VaR we consider the manage-
ment regime with highest LEV at a given a-level confidence,
defined in our case as 95%. Thus, for a given management regime,
we expect that in 95% of the cases we will obtain a LEV superior to
the VaR. The management regime with highest CVaR, also referred
to as expected shortfall, yields the lowest probability of catas-
trophic outcomes, thus we search for the highest average value
of the (1-a)-quantile of the LEV distribution. In our case we defined
the management regime with the highest value yielded by the
average of the lowest 5% LEVs based on our simulations. Therewith,
we established the most robust management option considering
model, economic and climate change uncertainty.
3. Results

3.1. Calibration results

The calibration converged to the target distributions after 6 mil-
lion iterations of the DEMCzs algorithm. Only the potential scale
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reduction factor of alpha (canopy quantum efficiency) was with
1.28 still slightly higher than our convergence criterion, but due
to computational limitations, we accepted this result as a sufficient
approximation of the posterior.

The marginal posterior distribution of model parameters are
presented in Table 3 (for parameters description see Appendix
Table 3
Posterior parameter estimates, summarized by their quantiles.

Parameter Quantile

2.50% 25%

pFS2 0.030 0.031
pFS20 0.050 0.051
aS 0.238 0.292
nS 2.141 2.174
pRx 0.301 0.313
pRn 0.029 0.039
gammaFx 0.016 0.018
gammaF0 0.000 0.001
tgammaF 16.740 48.400
gammaR 0.000 0.000
Topt 10.280 12.330
Tmax 25.810 30.260
Tmin -9.848 -8.485
fCalpha700 1.020 1.234
fCg700 0.023 0.228
m0 0.001 0.011
fN0 0.206 0.251
fNn 0.550 0.981
MaxAge 203.500 233.500
nAge 1.932 3.039
rAge 0.555 0.689
gammaNx 0.006 0.062
gammaN0 0.001 0.007
tgammaN 21.620 36.420
ngammaN 0.027 0.303
wSx1000 244.900 324.500
mF 0.012 0.107
mR 0.007 0.066
mS 0.009 0.069
SLA0 10.580 15.130
SLA1 12.560 19.190
tSLA 3.734 10.020
k 0.407 0.459
fullCanAge 10.640 16.260
MaxIntcptn 0.326 0.366
LAImaxIntcptn 0.742 4.636
alpha 0.031 0.039
Y 0.442 0.457
MinCond 0.001 0.008
MaxCond 0.020 0.025
LAIgcx 2.070 2.599
CoeffCond 0.000 0.003
BLcond 0.007 0.011
fracBB0 0.690 0.869
fracBB1 0.003 0.040
tBB 22.010 29.020
rhoMin 0.261 0.309
rhoMax 0.480 0.538
tRho 66.410 111.300
aH 4.341 5.143
nHB 0.421 0.432
FR_1 0.118 0.160
FR_2 0.174 0.312
FR_3 0.123 0.215
FR_4 0.133 0.203
FR_5 0.167 0.241
FR_6 0.128 0.202
FR_7 0.110 0.172
FR_8 0.358 0.437
FR_9 0.096 0.135
FR_10 0.176 0.241
FR_11 0.041 0.086
FR_12 0.021 0.099
D). The data was more informative for parameters related to allo-
metric relationships and carbon partitioning, e.g. constant and
slope of stem mass and diameter relationship (aS and nS), while
there was considerable uncertainty for parameters related to stand
mortality, e.g. fraction mean single-tree foliage, mean single-tree
root and mean single-tree stem biomass lost per dead tree
50% 75% 97.50%

0.033 0.036 0.048
0.052 0.055 0.062
0.322 0.351 0.391
2.200 2.229 2.287
0.331 0.356 0.430
0.048 0.057 0.072
0.019 0.021 0.025
0.002 0.003 0.003
80.790 114.900 146.800
0.000 0.000 0.001
14.640 17.670 24.180
33.960 37.000 39.710
-6.834 -4.713 -0.184
1.433 1.660 1.873
0.451 0.701 0.966
0.018 0.024 0.029
0.296 0.346 0.453
1.270 1.577 1.956
265.600 301.800 344.800
3.545 3.957 4.292
0.796 0.922 1.216
0.110 0.172 0.311
0.014 0.022 0.029
51.230 65.010 78.590
0.644 1.024 1.452
394.200 459.700 531.200
0.207 0.302 0.391
0.127 0.188 0.243
0.128 0.189 0.244
20.100 24.900 29.500
22.880 26.120 29.510
16.330 22.860 29.270
0.504 0.550 0.595
22.320 28.760 35.150
0.382 0.392 0.399
6.302 7.765 9.637
0.047 0.056 0.068
0.473 0.492 0.508
0.015 0.023 0.029
0.028 0.029 0.030
3.092 3.545 3.957
0.007 0.013 0.030
0.013 0.016 0.021
0.930 0.970 0.997
0.087 0.137 0.193
32.480 35.410 38.130
0.342 0.380 0.460
0.576 0.612 0.672
128.100 140.600 149.100
5.496 5.767 5.980
0.445 0.464 0.511
0.202 0.257 0.339
0.395 0.493 0.588
0.278 0.350 0.462
0.261 0.328 0.435
0.301 0.367 0.502
0.260 0.333 0.469
0.222 0.281 0.407
0.466 0.486 0.499
0.166 0.206 0.277
0.298 0.377 0.475
0.112 0.144 0.220
0.149 0.205 0.317

(continued on next page)



Table 3 (continued)

Parameter Quantile

2.50% 25% 50% 75% 97.50%

sigmaDBH 2.270 2.610 2.799 2.985 3.418
sigmaH 1.282 1.939 2.125 2.304 2.677
sigmaWF 0.066 0.100 0.126 0.162 0.280
sigmaWR 0.378 0.498 0.574 0.659 0.854
sigmaWS 2.516 3.425 4.027 4.734 6.460
sigmaVol 5.623 8.002 9.520 11.080 14.690
uDBH 0.119 0.359 0.569 0.770 0.972
uH 0.021 0.204 0.455 0.691 0.961
uWF 0.000 0.002 0.006 0.011 0.042
uWR 0.000 0.002 0.003 0.006 0.014
uWS 0.000 0.002 0.005 0.008 0.018
uVol 0.001 0.005 0.010 0.017 0.032
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(mF, mR and mS). Parameters related to the leaf biomass develop-
ment and leaf biomass, such as the specific leaf area (SLA0 and
tSLA) presented high uncertainty as well, thus indicating the need
to collect more informative data regarding leaf development.

The error model estimated heavier tails for leaf biomass, root
biomass, stem biomass and stand volume than for DBH and height.
For the first four variables, the parameter u, controlling the number
of degrees of freedom in the Student t likelihood, had median value
neighboring 0.05, resulting in small number of degrees of freedom
(close to 3 according to Eq. (3)). On the other hand, the same
parameter had much higher values for DBH and height (close to
0.5), indicating that outliers were less problematic for these
variables.

Model predictions had reasonable NRMSE and bias (Table 4) (for
model’s predictions see Appendix E). For all output variables
except foliage biomass, we observed a trend of slight underestima-
tion, indicated by the positive bias, ranging from 0.88 to 2.40%,
with the best results for stand height and poorest results for foliage
biomass. Similarly, the highest accuracy of predictions was
observed for stand height and DBH, presenting the lowest NRMSE
(7.3 and 8% respectively) and the poorest for foliage biomass
(14.96%). For the validation data, the results presented higher accu-
racy, with smaller NRMSE for all output variables except foliage
biomass and DBH, whereas the bias increased for all outputs. There
was stronger overestimation trend for foliage biomass, equal to
13.57%. Bayesian p-values for volume predictions showed a fairly
homogenous distribution indicating the suitability of the Student
t as error model (details in Appendix F).
Table 4
Goodness of fit of the calibrated model for calibration and validation data, expressed
by the percentage NRMSE (Normalized root mean square error) and PBIAS (Percent-
age bias).

Output variable NRMSE (%) PBIAS (%)

Calibration data
DBH (cm) 7.3 1.19
Stand height (m) 8.0 0.90
Stand volume (m3/ha) 8.37 0.88
Foliage biomass (tDW/ha) 14.96 �2.88
Root biomass (tDW/ha) 9.05 2.16
Stem biomass (tDW/ha) 8.64 2.40

Validation data
Output variable NRMSE (%) PBIAS (%)
DBH (cm) 9.07 �7.4
Stand height (m) 4.55 1.64
Stand volume (m3/ha) 6.65 �3.39
Foliage biomass (tDW/ha) 30.21 �13.57
Root biomass (tDW/ha) 5.84 3.09
Stem biomass (tDW/ha) 6.03 �0.69
3.2. Parametric and climate uncertainty impacts on forest profitability

Taking into account the uncertainty set for interest rates sup-
ported on [0.01, 0.03], management regime 15, with increased
thinning intensity, resulted in the highest expected LEV, whereas
the no thinning management (20) displayed the poorest economic
outcomes (Fig. 2), with a high probability density around 0. Man-
agement 5, considering BAU thinning and management 10 with
decreased thinning intensity presented similar results, with a bet-
ter performance under BAU thinning. In general, the LEV distribu-
tion displayed a positive skewness for all rotation ages and
thinning intensities.

Climate change, parameter and economic uncertainty affected
significantly the forest LEV. The LEV ranged in general from
�2000 EUR/ha to over 25,000 EUR/ha, i.e. from unviable (negative
LEV) to highly profitable forest management (Fig. 2). Even for the
cases of the most profitable management regimes evaluated, we
perceived a probability of obtaining a negative LEV. Moreover,
BAU management regimes were in general suboptimal considering
forest profitability.

Fig. 3a and b shows the LEV distribution of the robust manage-
ment regimes considering the interest rate uncertainty sets sup-
ported on [0.02, 0.04] and [0.03, 0.05] and expected values of 3
and 4%, respectively. Similarly to the results obtained applying
the interest rate supported on [0.01, 0.03], the increase in thinning
intensity appeared as the most suitable option in terms of prof-
itability. However, it was beneficial to decrease the rotation length
to 130 and 120 years when the expected interest rate increased to
3 and 4%, respectively. Additionally, we perceived a strong reduc-
tion on the expected LEV with increased interest rates, neighboring
500 EUR/ha for the interest rates with 3% expected value and -1100
EUR/ha when the expected interest rates increased to 4%.

We noticed that the LEV distribution showed a positive skewed-
ness for all uncertainty sets applied to interest rates. This behavior
arose both from the effect of interest rate and price uncertainty,
given that the price distribution was also positively skewed. In
addition, the fact that the LEV increases drastically in absolute
terms when the interest rate is reduced, resulting in a heavy right
tail, contributed substantially to the shape of the LEV distribution.

The uncertainty in LEV slightly increased with increasing cli-
mate change intensity (see details in Appendix G). The LEV
increased from trajectories considering RCP 2.6 to RCP 8.5 as result
of increasing productivity, mainly due to CO2 fertilization effects.
On the other hand, there was a concurrent increase in the standard
deviation as well, indicating that as climate diverge from current
conditions (e.g. RCP 8.5), the effects of climate change slightly
increase uncertainty.

Looking at the sources of uncertainty by regressing posterior
parameters against their outcomes, we found that the parameters



Fig. 2. The figure shows the distribution of the Land Expectation Value (LEV) based on parameter, climate and economic uncertainty. The curves correspond to management
regimes 5, 10, 15 and 20, described in Table 3, with its respective mean value (dotted lines), considering the interest rate distribution supported on [0.01, 0.03].

Fig. 3. The figure shows the distribution of the Land Expectation Value (LEV) based on parameter, climate and economic uncertainty. Mean values appear as dotted lines. (a)
shows the results for the interest rate distribution supported on [0.02, 0.04] and (b) displays the results for interest rate distribution supported on [0.03, 0.05].
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with the highest importance to management uncertainty for man-
agement regimes with thinning interventions (Fig. 4a–c) were
related to the growth enhancement due to CO2-fertilization (fCal-
pha700), the optimum temperature for growth (Topt), the canopy
quantum efficiency (alpha) and the maximum allocation of NPP
to roots (pRn). The first four parameters are closely related to
growth rates, whereas the maximum allocation to root has a direct
impact on the carbon allocation to stems. Consequently, the wood
volume produced in the stand and the respective LEV are signifi-
cantly affected. When no thinning interventions were applied,
the occurrence of mortality became significant, evidenced by the
high importance of parameter mS (fraction mean single-tree stem
biomass lost per dead tree), being directly related to the standing
volume and the value of the stand at the end of simulation period



Fig. 4. Importance of the uncertainty of the different parameters to the overall LEV uncertainty, measured as MDI ( mean decrease in node impurity). Estimates were obtained
by regressing parameter variation against LEV variation using a random forest for managements 5 (a), 10 (b), 15 (c) and 20 (d), considering all climate change trajectories.
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(Fig. 4d). For BAU and decreased thinning intensity (Fig. 4a–b),
parameter wSx1000, the maximum stem mass per tree (at a den-
sity of 1000 trees/hectare), affected strongly the LEV, as the aver-
age stand diameter is derived from this quantity, this parameter
controls the average tree dimensions. Therewith, stand assort-
ments and value are directly affected.

3.3. Robust optimal management under uncertainty

According to our results, themost robustmanagement regarding
climate, economic and parametric model uncertainty was manage-
ment scenario 15 when the, with increased thinning intensity and a
160-years rotation length. It yielded the highest mean LEV (6394
EUR/ha), VaR (-155 EUR/ha) and CVaR (�597 EUR/ha) (Table 5), thus
being themost robust alternative resulting in the lowest probability
of poor economic outcomes. On the other hand, the lowest mean
LEV was yielded by management 20 (2865 EUR/ha), with no thin-
ning interventions and a 160-years rotation length. In general, with
increasing rotation length, the probability of poor results decreased
for increased thinning intensity management, with the LEV distri-
bution presenting light shifts to the right and higher VaR. On the
other hand, for regimes with no thinning and decreased thinning
intensity, increasing rotation length decreased the profitability.
Moreover, we observed a stronger impact of thinning intensity on
forest profitability compared to the rotation length.

We found fairly high standard deviations for the LEV and conse-
quently low values for the VaR and CVaR. This behavior is likely the
combination of the high uncertainty with the choice of the a-
confidence level. The uncertainty in prices, interest rate and model
parameters led to a high standard deviation of the LEV that allied
to the high a-confidence level yielded low VaR and CVaR. We
would expect an increase in these values with the decrease in con-
fidence level and uncertainty.

Looking at the most robust alternative, management 15, it was
at first view rather unexpected that with increased rotation age the
LEV increased. The increase in rotation length obviously led to a
prolonged beneficial effect of CO2 fertilization on the growth
response of the stands at later periods of the simulation, and due
to the relatively low interest rates applied (ranging from1 to 3%),
forest growth rates remained higher than interest rates, counter-
balancing the opportunity costs of not harvesting earlier. On the
other hand, with lower contribution of early harvestings for man-
agement regimes with no thinning and decreased thinning inten-
sity, the LEV decreased with the increase in rotation length.



Table 5
Mean LEV, standard deviation (Sd), Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) for each management regime
and for each interest rate uncertainty set. The highest mean, VaR and CVaR for each interest rate set appear highlighted.
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We highlight that when the interest rate increased, it was ben-
eficial to decrease rotation lengths. For the interest rates supported
on [0.02, 0.04], management 12 with a 130 years rotation and
increased thinning intensity was the most robust, displaying the
highest VaR and CVaR (-1495 EUR/ha and �1662 EUR/ha, respec-
tively). With the increase in interest rates to the uncertainty set
supported on [0.03, 0.05], a further reduction in rotation length
to 120 years was the most robust solution (management 11).
Moreover, we perceived that when interest rates increased, the
selection of robust management regime varied when different
robust metrics were considered. For both sets applying increased
interest rates, the management with highest expected LEV differed
from the management with highest VaR and CVaR (Table 5), indi-
cating the importance of taking the tails of LEV distributions into
account when deciding upon management alternatives.

If we had disregarded parametric model and economic uncer-
tainty, we would have concluded that the optimum management
regime for the interest rate uncertainty set supported on [0.01,
0.03] would be management 11, 12 or 13, depending on the cli-
mate change trajectory (Table 6, results refer to the model outputs
generated with the median value of each model parameter and
presents the highest LEV management for each climate change tra-
jectory). Compared to the robust management regime, the opti-
mum solutions would result in a higher degree of risk, with a
decrease of 82% in the VaR value for management 11, 43% for man-
agement 12 and 29% for management 13.

In general, our results demonstrate a substantial influence of all
sources of uncertainty on the LEV (Fig. 5). The contribution of inter-
Table 6
Deterministic and robust solution for each of the 12 climate change trajectories (CC), wi
(GCM), Optimum management regime, the robust management regime and the reduction
interest rate uncertainty set [0.01, 0.03].

CC RCP GCM

1 2.6 HadGEM2-ES
2 2.6 IPSL-CM5A-LR
3 2.6 NorESM1-M
4 4.5 HadGEM2-ES
5 4.5 IPSL-CM5A-LR
6 4.5 NorESM1-M
7 6.0 HadGEM2-ES
8 6.0 IPSL-CM5A-LR
9 6.0 NorESM1-M
10 8.5 HadGEM2-ES
11 8.5 IPSL-CM5A-LR
12 8.5 NorESM1-M
est rate uncertainty was dominant when we applied the uncer-
tainty set supported on [0.01, 0.03], causing the LEV to range
from 0 to 20,000 EUR/ha. Price uncertainty and parametric model
uncertainty had a smaller but still important impact on the total
uncertainty. With the increase in interest rates in Fig. 5b and 5c,
the contribution of interest rate uncertainty to total uncertainty
reduced, whereas the contribution of price and parametric model
uncertainty increased. The LEV distribution showed a positive
skewedness, especially for interest rates, due to the stronger influ-
ence of the lower half of the interest rate distributions on LEV,
compared to the upper half.

Although model uncertainty contributed to smaller extent com-
pared to price and interest rate, especially when small interest
rates were applied (Fig. 5a), it showed an important effect on
LEV (ranging from 0 to 10,000 EUR/ha) and on the selection of
robust management alternatives. Taking into account only the eco-
nomic uncertainty, the robust management would be management
12 (details in Appendix H), which presented considerably lower
VaR and CVaR values when parametric model uncertainty was
included in the analysis (Table 5).

4. Discussion

We used the process-based forest model 3-PG to investigate the
impact and relative importance of uncertainty in model parame-
ters, drivers (climate change trajectories) and economic parame-
ters on the predicted profitability of beech forests. Uncertainties
were estimated using Bayesian inference and then propagated to
th its respective Representative Concentration Pathway (RCP), Global Climate Model
in Value-at-Risk of the deterministic solution compared to the robust solution for the

Optimum Robust VaR difference (%)

11 15 �82
11 15 �82
12 15 �43
12 15 �43
12 15 �43
12 15 �43
11 15 �82
12 15 �43
13 15 �29
11 15 �82
13 15 �29
13 15 �29



Fig. 5. Contribution of difference sources of uncertainty to the total uncertainty for the robust management 14, under climate change trajectory 1 (Table 6). Figures (a), (b)
and (c) correspond to the uncertainty sets to interest rates supported on [0.01, 0.03], [0.02, 0.04] and [0.03, 0.05], respectively.
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estimates of forest productivity and profitability. Our main find-
ings are that all three uncertainties strongly impact forest prof-
itability, and that neglecting them can lead to the selection of
risky management options in the future. Our study thus both, high-
lights the importance of including uncertainty in the decision-
making process, and provides a blueprint to operationalize such
a goal. In what follows, we discuss the results of the study in more
detail.

4.1. Calibration of the model and estimation of parametric uncertainty

In our calibration, the data proved informative especially for
parameters directly related to stand structure, such as the inter-
cept and slope of allometric equations for diameter and height.
Higher uncertainties remained in parameters related to the canopy
development. Some calibrated values markedly deviated to previ-
ous 3-PG calibrations for other species: The foliage and stem parti-
tioning ratios for young and mature stands (pSF2 and pFS20)
obtained in our study (presenting median values equal to 0.034
and 0.055) were substantially lower compared to usual values that
range from 0.2 to 0.9 (e.g. Headlee et al., 2013; Nightingale et al.,
2008). On the other hand, the obtained values for these parameters
are compatible with the calibration for other deciduous species,
e.g. Potithep and Yasuoka (2011), who used values equal to 0.03
and 0.03, respectively. The calibrated specific leaf area for mature
leaves was substantially higher compared to other species (median
values equal to 18), in line with other reported values for beech in
the literature (e.g. Bartelink, 1997; van Hees, 1997).

Although the predictions for stand volume were reasonable, we
observed that the model response after strong thinning interven-
tions was not adequate, as it underestimated the volume in this
case for the majority of sites (details in Appendix D). This behavior
may arise due to the high growth responsiveness of beech even at
advanced age and to limitations in the 3-PG canopy cover model,
particularly after disturbances. As Forrester and Tang (2016) note,
the model applies a canopy cover value between 0 and 1 that
accounts for reduction on the canopy cover after disturbance, but
does not account for the increased light absorption due to reduced
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shading from neighbor trees. In this sense, the light absorption by
the canopy may be underestimated, resulting in an underestima-
tion of the growth rates after thinning interventions.

Foliage biomass estimates were less accurate compared to the
other outputs. Paul et al. (2007) found a similar pattern evaluating
growth predictions yielded by 3-PG for two species in Australia,
obtaining poor model efficiency for the prediction of foliage bio-
mass, with much higher efficiency for DBH and stem biomass. Foli-
age biomass is usually less well explained by other predictors, such
as DBH, compared to volume or stem biomass, presenting in gen-
eral lower coefficients of determination (Muukkonen, 2007;
Zianis et al., 2005). The predictions obtained through the calibra-
tion showed NRSME values close or below 10% for the output vari-
ables, whereas the bias remained below 4%, with exception of the
leaf biomass, with substantially higher NRMSE and bias (14.96%
and -2.88%, respectively). These ranges are compatible with the
values found in the literature applying 3-PG to evaluate the growth
of other tree species (e.g. Nightingale et al., 2008; Rodríguez-
Suárez et al., 2010; Zhao et al., 2009).
4.2. Parametric and climate uncertainty impacts on forest productivity

We observed strong impacts of climate change and parametric
model uncertainty on forest profitability in our results. Similarly,
Reyer et al. (2016) reported significant impacts of climate and
parameter uncertainty on forest NPP in Europe. Lonsdale et al.
(2015) obtained predictions for Pinus sylvestris in UK applying the
model 3-PGN, calibrated using a Bayesian approach, ranging
approximately from 500 to 750m3/ha at an age of 100 years, that
would roughly result in a 33% difference between the upper and
lower bound of the growing stock’s net present value (considering
a 2% interest rate). Moreover, numerous studies highlight the
importance of taking into account parametric model uncertainty
when providing productivity and ecosystem development esti-
mates (e.g. Ahlström et al., 2012; Valle et al., 2009; Verbeeck
et al., 2006; Zaehle et al., 2005).

Our results demonstrate important impacts of parametric
model uncertainty for a process-based model. An open question
is if similar results would be expected for empirical models.
McRoberts and Westfall (2014) and Berger et al. (2014) analyzed
the effects of parameter uncertainty for estimating individual tree
volumes for large area estimates, using forest inventory data. The
authors found minor impacts of parameter uncertainty on the pre-
dictions. These results could be explained from the nature of mod-
els applied in these studies. Simple empirical individual tree
volume models typically present high coefficients of determination
and low parameter variance, resulting in only marginal effects of
parameter uncertainty on model predictions.

We found that the most important 3-PG parameters contribut-
ing to LEV uncertainty were related to the absorbed PAR and CO2

fertilization effects, thus with direct impact on forest productivity
and wood production. This is in accordance with studies assessing
the effects of climate change and CO2 fertilization on forest produc-
tivity applying other process-based models (e.g. Devaraju et al.,
2016; Reyer et al., 2014). The parametric model uncertainty
reflects the ongoing debate about the limitations of CO2 fertiliza-
tion, in particular whether productivity may eventually be limited
by other factors, such as nutrient availability (Girardin et al., 2011).
In this sense, carbon fertilization effects might result in an overes-
timation of forest growth and consequently forest profitability.
Moreover, for management regimes with no thinning, parameters
related to mortality were critical, due to the increase in inter-
tree competition. Hence, the sensitivity of the model to mortality
parameters was enhanced. Hülsmann et al. (2016) point to this
behavior modeling beech mortality in three European regions,
indicating that mortality in beech forests was mainly driven by
competition.

4.3. Robust optimal management under uncertainty

The LEV ranges obtained in our study for beech stands are com-
patible with values reported in the literature (e.g. Griess and
Knoke, 2013; Hanewinkel et al., 2013). The optimum management
regime disregarding climate, model and economic uncertainty rec-
ommended shortening the rotation age (120–140 years) in accor-
dance with Hanewinkel et al. (2010). Similarly, the consideration
of higher interest rates also sustained a reduction in rotation
length to 130 and 120 years as the most robust option, as the
growth rates of the forest were not capable to surpass the interest
rates applied and counterbalance the opportunity costs of not har-
vesting the stands earlier.

In our analysis, the choice of an optimum management regime
would imply a higher degree of risk when uncertainty was consid-
ered. Härtl et al. (2013), Neuner et al. (2013) and Eyvindson and
Kangas (2017) point to similar patterns applying portfolio opti-
mization theory in forest planning problems. The authors report
the selection of management regimes different from the nominal
optimum when uncertainty and risk is included in the analysis.
In addition, increasing interest rates also resulted.

A trade-off between robustness and optimality might appear
when considering planning under uncertainty. It may be necessary
to sacrifice optimality for less sensitivity to the various sources of
uncertainty (Lempert and Collins, 2007). This behavior is reported
by numerous studies addressing environmental management
under uncertainty (e.g. McInerney et al., 2012; Regan et al., 2005;
Singh et al., 2015). However, in our approach, the conservativeness
of the response may be adjusted by modifying the confidence level
of the VaR and CVaR, in order to accurately represent preferences
of managers or decision-makers. A decrease in the a-level approx-
imates the VaR and CVaR to the mean LEV. More risk-averse man-
agers are likely to care about the tails of the distribution, choosing
a higher a-level, i.e. focusing on the worst-case scenario, whereas a
risk-loving manager is likely to focus on the expected value of the
LEV distribution, choosing a lower a-level.

In our study, we directly estimated the probabilities of model
parameters, whereas climate change trajectories were deep uncer-
tain. There might be cases where it is not possible to directly esti-
mate any probabilities or distributions have only partial
information. In such cases, other robust non-stochastic approaches
may be applied as well. One option is the application of robust
tractable approximations, obtained by bounding probabilities and
allowing to guarantee the performance in worst-case scenarios
(Ben-Tal et al., 2009). Another possibility is the application of sat-
isficing or regret approaches proposed by the Robust Decision
Making framework. These approaches provide a solid background
for decision-making under uncertainty, allowing selecting options
that perform well over a wide range of possible scenarios (Hadka
et al., 2015).

We highlight that neglecting parameter, climate and economic
uncertainty when developing management plans may result in
poor outcomes in the future. Therefore, it is crucial to include these
analysis in forest management plans. In this sense, the Bayesian
framework appears as a natural choice, due to the possibility of
obtaining a direct estimation of parameter uncertainty. Although
examples of linkages between parametric model uncertainty and
decision-making using a Bayesian approach may be found in man-
agement of other environmental resources, such as water manage-
ment (e.g. Hobbs, 1997; Katz, 2002), its application to forest
management is very scarce.

Forest management, similarly to the management of other envi-
ronmental resources, involves a constant process of collecting data,
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implementing and revising management actions, constantly
updating beliefs, which makes the Bayesian paradigm adequate
(Dorazio and Johnson, 2003). In this context, we point to the fact
that due to the lack of studies calibrating the 3-PG forest model
for beech, we applied non-informative priors, obtaining relatively
high parameter uncertainty, especially for parameters to which
the data was not informative. Future studies could use our poste-
rior results as new priors when new data become available
(Hartig et al., 2012). For this purpose, we provide a thinned poste-
rior sample (1000 samples) in the supplementary material. More-
over, beliefs in climate change trajectories may be updated and
uncertainty reduced with new information (Yousefpour et al.,
2013). Therewith, it is possible to reduce parametric model uncer-
tainty and provide narrower parameter ranges and LEV
distributions.
4.4. Limitations

Our parametrization of the process-based model 3-PG was
based on wide (uninformative) priors. While the data was informa-
tive for several parameters, canopy development was not well con-
strained. Collecting more data on these parameters could likely
further reduce parametric model uncertainty and produce more
accurate estimates. Landsberg et al. (2003) suggested that, in order
to obtain satisfactory results of growth simulation applying 3-PG,
collecting information regarding the leaf area index, litterfall rates
and stem mass is recommended.

We considered in our approach the uncertainties related to
model parametrization, economy and climate change, which are
commonly neglected by managers. These sources of uncertainty
are critical for decision-making in forestry. However, we did not
consider some other important sources of uncertainty that may
also have significant implications for forest management. For
instance, wood demand and operational efficiency may have
strong impacts on forest profitability and thus could be included
when deciding upon management strategies (Pasalodos-Tato
et al., 2013). In addition, disturbances such as diseases, pests and
changes in wood characteristics may have a significant impact on
forest profitability. Beech trees at advanced age are particularly
susceptible to the occurrence of red heart, which affect directly
wood properties and its value, thus with implications to forest
profitability (Zell et al., 2004). In this sense, the 3-PG model may
be extended to encompass forest disturbances and wood quality
to provide a more holistic analysis of risk.

The selection of the best management regime, as well as the
impacts of different sources of uncertainty, was based purely in
the economic outcome of the forest in our analysis. Therefore, we
observed an overwhelming impact of the interest rate and price
uncertainty. However, this might not be the case when multiple
ecosystem values are considered, e.g. carbon sequestration, biodi-
versity and disturbance risk might be strongly affected by climate
and model uncertainty. In this sense, future research may focus on
robust management alternatives considering multiple-objective
forest management, including managers’ preferences for different
forest ecosystem goods and services, applying multi-criteria deci-
sion making (MCDM) tools and evaluating trade-offs between dif-
ferent objectives (e.g. Creutzburg et al., 2016; Schwenk et al.,
2012).
5. Conclusions

Forest managers and policy makers often face several sources of
uncertainty when designing forest plans (e.g. environmental con-
ditions, prices, operation efficiency), which adds considerable com-
plexity to the management decision and usually creates trade-offs
between high-yield and robust strategies. An important source of
uncertainty usually neglected by forest managers is parametric
model uncertainty, which implicitly represents the uncertainty
about the properties of the forest itself. Bayesian inference
addresses this problem by providing a framework for quantifying
and merging uncertainty at different levels of the modeling pro-
cess, and propagating it to practical outcomes (e.g. NPV, LEV, and
IRR) or other models. Our study demonstrates that this approach,
combined with risk analysis, may be successfully applied to ana-
lyze the uncertainty of process-based forest models in a forest
planning context. We used the framework to select management
alternatives that were robust against parametric, economic and cli-
mate change uncertainty. We believe that such a systematic quan-
tification of uncertainties is key for designing management plans
that will safeguard the provisioning of forest goods and services
under climate change, according to societal preferences.
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